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Abstract

To defeat Gibbs� phenomenon in Fourier and Chebyshev series, Gottlieb et al. [D. Gottlieb, C.-W. Shu, A. Solomo-

noff, H. Vandeven, On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a

nonperiodic analytic function, J. Comput. Appl. Math. 43 (1992) 81–98] developed a ‘‘Gegenbauer reconstruction’’.

The partial sums of the Fourier or other spectral series are reexpanded as a series of Gegenbauer polynomials

Cm
n ðxÞ, recovering spectral accuracy even in the presence of shock waves or other discontinuities. To achieve a rate

of convergence which is exponential in N, however, Gegenbauer reconstruction, requires increasing the order m of

the polynomials linearly with the truncation N of the series: m = bN for some constant b > 0. When the order m is fixed,

it is well-known that the Gegenbauer series converges as N !1 everywhere on x 2 [�1,1] if f(x), the function being

expanded, is analytic on the interval. But what happens in the diagonal limit in which m, N tend to infinity simultane-

ously? We show that singularities of f(x) off the real axis can destroy convergence of this diagonal approximation proc-

ess in the sense that the error diverges for subintervals of x 2 [�1,1]. Gegenbauer reconstruction must therefore be

constrained to use a sufficiently small ratio of order m to truncation N. This ‘‘off-axis singularity’’ constraint is likely

to impair the effectiveness of the reconstruction in some applications.
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1. Introduction

When a function f(x) is expanded as series of basis functions that depend upon a parameter m as well as

upon a degree n, the error in truncating the approximation after the Nth term defines the two-dimensional

array of maximum pointwise errors
Eðm;NÞ � max
x2½�1;1�

f ðxÞ �
XN
n¼0

amn C
m
n ðxÞ

�����
�����: ð1Þ
In our application, the Cm
n are the Gegenbauer polynomials. For a fixed m, these polynomials are defined

by the orthogonality integral
Z 1

�1

CðmÞ
n CðmÞ

n0 ð1� x2Þm�1=2
dx ¼

0 n 6¼ n0;
p21�2mCðnþ2mÞ
n!ðnþmÞCðmÞ2 � hmn n ¼ n0;

(
ð2Þ
where n is the degree of the polynomial. We shall usually plot the error array and so on for m = integer + 1/

2 so that the weight function inside the integral is non-singular.

A typical error array for a particular f(x) is illustrated in Fig. 1. Standard convergence theory is what we

shall dub the ‘‘horizontal limit’’: N! 1 while the Gegenbauer order m is fixed. What happens is described

by the following:

Theorem 1.1. (Gegenbauer ellipse of convergence). The Gegenbauer series of f(x) for FIXEDFIXED m converges in

the largest ellipse with foci at x = ±1 in which f(x) is analytic. (Stated for the more general family of Jacobi

polynomials on p. 243 of [33].)

This theorem is very powerful because it implies that if f(x) is analytic on the expansion interval,

x 2 [�1,1], then the Gegenbauer polynomial series for fixed m is guaranteed to converge everywhere on

the expansion interval.

The ‘‘vertical’’ limit describes what happens for fixed N but Gegenbauer order tends to infinity. Since the

Gegenbauer series is a least-squares approximation with the weight function (1�x2)m � 1/2, which becomes
more and more concentrated around the origin asm increases, the vertical Gegenbauer approximation tends

to the (N + 1)-term truncation of the power series about x = 0. This is rigorously proved in Appendix A.
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Fig. 1. The base-10 logarithm of the error array E(m,N) is plotted for f(x) = (1/4)/([1/4] + x2), which has poles at ±i/2.
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This is rather alarming because the power series – and therefore the vertical Gegenbauer limit – will

diverge over part of the expansion interval, x 2 [�1,1], unless f(x) is free of singularities in the unit disk

in the complex plane, |x| 6 1.

Our goal is to understand the diagonal approximations defined formally by the following.

Definition 1.1. (Diagonal Gegenbauer approximation). With the error E(m,N) as defined by (1), a

‘‘diagonal limit’’ or ‘‘diagonal approximation’’ is a sequence of approximations
Fig. 2.

limit w

approx

visuali

only n
Eðb;NÞ � EðbN ;NÞ; ð3Þ

which are obtained by varying the order with truncation N according to the rule
m ¼ bN ; ð4Þ

where b is a positive constant.

If the diagonal limit of Gegenbauer approximation behaves similarly to the vertical limit, then the

approximation may diverge for some x on the expansion interval – a possible land-mine exploding the

validity of the Gegenbauer reconstruction of Gibbs� phenomenon.

In the following section, we show numerically that this divergence does happen and analyze the details.
2. Generalized Runge phenomenon for diagonal Gegenbauer approximations

Fig. 2 shows the maximum pointwise error for four different f(x) in the diagonal limit with b = 1. Just as

for an ordinary power series, the error falls exponentially when the singularity is sufficiently far from the

real axis. However, when the poles are moved closer to the origin, the approximation diverges

exponentially!
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The maximum pointwise errors for the approximation of four different functions of the form f(x) = y2/(y2 + x2) in the diagonal

ith b = 1. That is, E(m,m) is plotted, where m is the Gegenbauer order, which is set equal to the truncation N for each

imation. This f(x) has complex conjugate poles on the imaginary axis at x = ±iy. We arbitrarily chose b = 1 for ease of

zation; b = 1/4 is more typical in Gegenbauer reconstruction. However, the same phenomenon is observed for smaller b; it is
ecessary to move the singularities closer to the expansion interval as b decreases.
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Fig. 3. Isolines of the base-10 logarithm of the maximum pointwise errors for the approximation of functions of the same form as in

the previous graph, f(x) = y2/(y2 + x2) for four different imaginary values of y, as Gegenbauer series for various orders m (vertical axis)

and truncation N (horizontal axis). Solid contours denote 100% or larger error relative to the maximum of each function; negative

contours are dashed, and indicate that the approximation has an absolute error of 0.1 or less.
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Fig. 3 shows the contours in the N�m plane of the logarithm of the error for the same four functions as

in Fig. 2. The contours of zero or positive logarithm – 100% or larger error – are solid while the dotted

contours (negative powers-of-ten) denote at least a moderate accuracy. The lower right panel, which is al-

most all dashes, shows that when the singularity is at one or further from the real axis, almost all diagonal

approximations converge, regardless of the value of the parameter b ” m/N. When the pole is at 2/3 i, the

error contours are roughly parallel to the diagonal line m = N. The error neither increases nor decreases
along this line. However, it is possible to obtain convergence by moving on a line of shallower slope, that

is, by setting m = bN for b < 1 so that the order m increases more slowly than the truncation. The top panels

show that as the poles move closer to the real axis, the region of accuracy in the m�N plane shrinks, and it

is necessary to use a shallower and shallower slope, i.e., smaller and smaller b = m/N, in order to obtain any

accuracy at all.

Fig. 4 shows what happens as a function of x: the diagonal Gegenbauer approximations do not diverge

over the entire expansion interval, but only in subintervals near the boundaries. The subintervals of diver-

gence for the case illustrated are roughly |x| 2 [0.8,1]; these widen as the singularity moves closer to the real
axis, and shrink to nothing – convergence everywhere on x 2 [�1,1] – when the singularity at zs = i or

farther.

Runge showed at the turn of the twentieth century that polynomial interpolation at evenly spaced points

could diverge. Just as here, the interpolant converged on the center part of the interval while diverging near

the boundaries of the interval spanned by the interpolation points. Since something very similar is happen-

ing here – divergence near the endpoints because of complex-plane singularities – it is reasonable to dub the

Gegenbauer-diagonal-limit divergence a ‘‘generalized Runge phenomenon’’.
3. Convergence domain in the complex plane

The preceding examples have employed functions which are singular on the imaginary axis. An obvious

question is: What happens when the location of the singularity is different?
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Fig. 5 shows the errors for the m = N approximant as functions of the location zs of the pole in the upper

right quadrant of the function
f symm;poleðx; zsÞ � ½IðzsÞ�2
1

½IðzsÞ�2 þ x�RðzsÞð Þ2
þ 1

½IðzsÞ�2 þ xþRðzsÞð Þ2

( )
: ð5Þ
The form is chosen so that fsymm,pole is symmetric with respect to both the real and imaginary axes, mak-

ing it sufficient to graph only the upper right quadrant of the zsing plane.

The zero isoline, that is, where the maximum pointwise error is equal to one, is roughly the boundary
between convergence and divergence. The large errors in the region of solid contours show that a pole

in that region will force the diagonal Gegenbauer approximation (with m = N) to diverge. However, the

Gegenbauer diagonal approximation converges when the singularity is outside the heavy contour. The

graph illustrates the errors for m = N = 30 and the contours are rather wiggly; as a check, the zero contours

for both m = N = 20 and m = N = 30 are shown as the dashed lines and the heavy solid curve is a smooth fit

between them. The three curves are barely distinguishable, showing that the boundary is rather

well-defined.

The divergence region is widest for singularities on the imaginary axis and then curves closer and closer
to the real axis as RðzsÞ approaches one. As the parameter b decreases, that is, as the ratio m/N decreases,

the region of divergence will shrink (not illustrated).
4. Theory of Gegenbauer approximation

Gottlieb and Shu [20] review two theorems on convergence of diagonal approximants. We combine these

into one, altering their notation into ours, as follows:
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Fig. 5. Isolines of the base-10 logarithm of the error in the diagonal Gegenbauer approximation with m = N = 30 of the function
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Theorem 4.1. Let m = bN where m is the order of the Gegenbauer polynomials and N is the Gegenbauer
truncation and b > 0 is a constant. Define the error for the Gegenbauer polynomials, as in (1), to be
Eðm;NÞ � max
x2½�1;1�

f ðxÞ �
XN
n¼0

amn C
m
n ðxÞ

�����
�����: ð6Þ
1. If f(x) is analytic everywhere in an ellipse in the complex x-plane with foci at ±1 and axes (cosh(l),sinh(l)),
then
EðbN ;NÞ 6 constant NQN expð�NlÞ; ð7Þ

where
QðbÞ � ð1þ 2bÞð1þ2bÞ=2

ð2bÞb
: ð8Þ
2. If f(x) is analytic at all points in the complex x-plane which lie a distance q or closer to any point of the

interval x 2 [�1,1], then
EðbN ;NÞ 6 constant N ~Q
N
q�N ; ð9Þ
where
~QðbÞ � ð1þ 2bÞ1þ2b

bb21þ2bð1þ bÞ1þb : ð10Þ
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3. For any f(x) that satisfies the first assumption, the diagonal Gegenbauer approximation will converge expo-

nentially fast if b is chosen sufficiently small, that is, if the slope of order/truncation is sufficiently small, so

that
Fig. 6.

from th

functio
QðbÞ < expðlÞ: ð11Þ

4. For any fixed b > 0, it is always possible to find functions that are analytic on the real interval x 2 [�1,1]

for which both bounds fail to guarantee convergence.

Fig. 6 shows representative curves for the two conditions in the theorem. The fourth proposition in the

theorem is not in their review, but is easily proved by considering a function with singularities at x = ±i�:
for any b, one can always find a sufficiently small � > 0 such that Q and ~Q are insufficiently small to guar-

antee convergence.

The good news is that the third condition shows that for any function which is analytic on the interval

and within an ellipse of finite eccentricity around it, the diagonal Gegenbauer approximation can be guar-

anteed to converge.

The first piece of bad news is that small b seriously degrades the accuracy of the Gegenbauer reconstruc-
tion of functions with shock waves or other discontinuities which is discussed in the following section.

The second piece of bad news is that the theorem is consistent with the numerical results given earlier: for

fixed b, it is always possible to find f that are analytic on x 2 [�1,1], but break the theorem.

Gottlie and Shu give both bounds because the geometry of the curves of constant l and q are different,

and one bound or the other may be best for a given f(x). Unfortunately, neither bound is tight. When b = 1,

for example, Q = 2.6 and ~Q ¼ 0:84. For a singularity on the imaginary axis, the theorem guarantees

convergence only when the singularity is further than 1.1 and 0.84 from the real axis, respectively. The
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numerical calculations show that with m = N, the approximation converges until the singularity is within

about 0.66 of the real axis.

The important point is that there is no contradiction between the theorems and the numerical results:

complex-plane singularities can destroy convergence for any finite ratio of order to truncation, b.
5. Gegenbauer reconstruction of shocks and discontinuities

The strategy of Gottlieb et al. [21] is simple: the Fourier partial sums are reexpanded as a Gegenbauer

series (the shocks can always be moved to x = ±1 by stretching the coordinate; their method applies to

Chebyshev and other spectral series, too, but for simplicity we shall discuss only Fourier series with a dis-

continuity at x = ±1). If the order m is fixed, the Gibbs� oscillations in the partial sums of the Fourier series

will poison the polynomial series, too. The polynomial expansion will converge only as O(N�k) for some
finite k > 0 that increases with m. By increasing the order m linearly with the truncation N, the polynomial

approximation is weighted more and more heavily away from the ‘‘danger zone’’ of the neighborhood of

the discontinuities and of large oscillations in the Fourier sums. By judiciously choosing the parameter

b = m/N and also the ratio of the Gegenbauer truncation N to the Fourier truncation Nf, always so that

N is much smaller than Nf, one can prove that the diagonal limit converges, and yields a good approxima-

tion to the discontinuous function [20]. The success of Gegenbauer reconstruction has spawned an industry

of theoretical papers [21,16–19,12,9,10,23–25,32,26,11] and applications in fluid mechanics [29–31,7],

hyperbolic waves [15], local Fourier methods [35,36] and medical imaging [2,1,3,14]. The reconstruction
procedure has recently been extended to high order finite difference (WENO) computations by Gottlieb

et al. [22].

The only worry is that in applications, most functions are not free of singularities everywhere in the com-

plex x-plane, but rather have poles or branch points at finite x. We have already seen that such singularities

are a potential disaster for diagonal Gegenbauer approximations.

However, there is a subtlety: the reconstruction is not applied to f(x) itself, but rather to a function ~f
which is a trigonometric polynomial. By definition, ~f is an entire function, free of all singularities. Does this

exempt the Gegenbauer reconstruction from difficulties?
The answer is no. We have carried out a thorough study with several figures which were deleted from the

final draft, but is available from the author. Unless the number of Fourier terms, Nf, is O(10), far smaller

than in any reasonable reconstruction procedure, the trigonometric polynomial ~f will impersonate the sin-

gular function f(x) sufficiently well so that, insofar as the Gegenbauer Runge Phenomenon is concerned,

there is no meaningful difference between them.
6. Conclusions

When the order m increases with the truncation N, what we have dubbed the ‘‘diagonal limit’’ of an

approximation process for a class of polynomials that contain a parameter m, new numerical phenomena

may appear and convergence theory must be completely rethought. In particular, the theorem that

Gegenbauer polynomials always converge on the expansion interval x 2 [�1,1] as N ! 1 for fixed order

m must be replaced by the statement that the diagonal approximation may diverge near the ends of the

interval even for a function f(x) which is analytic everywhere on the expansion interval.

This discovery of a generalized Runge phenomenon has been made by numerical experiments. Future
work should try to capture this Runge divergence in asymptotic approximations. Szegö [33, p. 249] gives

the exact expansion coefficients for the function f = 1/(y � x), proportional to associated Legendre func-

tions of the second kind, Qm
n ðyÞ. An asymptotic approximation for the Legendre functions, uniformly valid
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in the limit (m, n) go to infinity simultaneously, would give theoretically what here has been explored only

numerically. But this would be only the beginning of a rich new area of ‘‘diagonal’’ approximation theory.

Does the Runge Phenomenon foretell the death of Gegenbauer reconstruction? No; the method has tri-

umphed in a number of demanding real-world applications such as [7,2,1,30,3]. The mere presence of a

minefield does not guarantee an explosion. Indeed, Gottlieb and Shu [20] proved that the Gegenbauer
expansion can be guaranteed to converge in the diagonal limit if the ratio of order divided by truncation

is sufficiently small. However, their theorems only show that small b ” m/N is sufficient for convergence.

We have here shown that small b is unfortunately necessary for convergence when f(x) has poles or branch

points close to the interval x 2 [�1,1].

Unfortunately, the location of off-axis singularities is usually unknown for most real science and engineer-

ing problems; the exceptions prove only that there are such singularities [4–6,28,34]. Gelb and Jackiewicz [13]

describe a procedure to estimate the parameter q, which measures proximity of off-axis singularities. Unfor-

tunately, the singularity structure can be very complicated with an infinity of poles or branch points forming a
fractal natural boundary for the region of analyticity [5,6,28,34]. And yet we have shown that such singular-

ities can wreck a diagonal Gegenbauer expansion. The choice of parameters for the reconstruction must be

constrained so that the Gegenbauer approximation will converge in spite of off-axis poles or branch points of

f(x). Our work suggests that the problem of off-axis singularities is more serious than previously thought.
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Appendix A. The ‘‘vertical limit’’: a proof that Gegenbauer series tend to power series as the order m tends to

infinity

Theorem A.1. (Large order limit of Gegenbauer expansions). Suppose a function f(x), analytic on

x 2 [�1,1] and in a small disk about the origin, is expanded as
f ðxÞ ¼
X1
n¼0

bn
Cm

n ðxÞ
Cm

n ð1Þ
; ðA:1Þ
that is, the bn are the coefficients of the Gegenbauer series when the polynomials are normalized so as to have a

maximum value of one at x = 1.

Then in the limit m ! 1 for fixed n

1. The Gegenbauer coefficients asymptote to the power series coefficients of f(x):
bn �
1

n!
dnf
dxn

ð0Þ 1þOð1=mÞf g: ðA:2Þ
2. The nth Gegenbauer polynomial with this normalization asymptotes to xn
Cm
n ðxÞ

Cm
n ð1Þ

� xn 1þOð1=mÞf g; x 2 ½�1; 1� ðA:3Þ
3. It follows that the N-term truncation of the Gegenbauer series asymptotes to the N-term power series.



Table 1

Coefficients of the N = 8 Gegenbauer approximations, converted to powers-of-x form, for f = 1/(1 + x2) and various m

m 1 x2 x4 x6 x8

20 0.99999913 �0.999772 0.9915 �0.898 0.514

40 0.999999925 �0.999965 0.9978 �0.955 0.660

100 0.9999999984 �0.9999983 0.99975 �0.989 0.822

250 0.999999999976 �0.999999940 0.999979 �0.9978 0.918

500 0.99999999999917 �0.9999999958 0.9999971 �0.99942 0.957

1000 0.999999999999972 �0.99999999972 0.99999962 �0.99985 0.978

Power series 1 �1 1 �1 1
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Fox and Parker [8, p. 17–18] prove the first proposition above, borrowing some arguments from [27].
However, since their book discusses Gegenbauer polynomials only to condemn them, and explain why

the rest of the book is about Chebyshev polynomials only, they do not formally prove the rest of the the-

orem, but merely assert that from the Gegenbauer differential equation ‘‘We deduce . . . that the Taylor

series . . .corresponds to the limiting ultraspherical orthogonal expansion as m ! 1’’. The remaining prop-

ositions are obvious consequences of the following lemma.

Lemma A.1. (Power series of Gegenbauer polynomials) Define the power series expansion coefficients as
Cm
n ðxÞ

Cm
n ð1Þ

¼
X½n=2�
k¼0

Bk
nðxÞxn�2k: ðA:4Þ
Then
Bk
n ¼ ð�1Þk Cðnþ 1ÞCð2mÞ

CðmÞCðnþ 2mÞ
Cðn� k þ mÞ

Cðk þ 1ÞCðn� 2k þ 1Þ 2
n�2k; ðA:5Þ

B0
n ¼

Cðnþ mÞCð2mÞ
CðmÞCðnþ 2mÞ 2

n ðA:6Þ

�1þ ð45=2Þ=mþ ð585=4Þ=m2; m ! 1; fixed n; ðA:7Þ

lim
m!1

Bk
n=B

0
n ¼

1

Cðk þ 1Þ22k
1

mk
: ðA:8Þ
Proof. The exact formula for the power series coefficients is (4.7.31) [33, p. 85]. Using the formula for for

Cm
n ð1Þ, which is (4.7.3) on p. 81 of [33], cancelling common factors and using the definition and asymptotics

of the factorial function proves the remaining propositions. h

Table 1 shows an example of asymptoting-to-the-power-series. Gegenbauer polynomials become

increasingly ill-conditioned as m increases; the last line of the table required 1200-digit arithmetic! A good
discussion of the ill-conditioning is [11].
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